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Inserm 143, University Hospital of Besançon, Besançon, France, 10 CNRS, Inserm, CHU Lille, Institut

Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, University of Lille, Lille,
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Abstract

Introduction

Over the past 50 years, the prevalence of allergic respiratory diseases has been increasing.

The Hygiene hypothesis explains this progression by the decrease in the bio-diversity of

early microbial exposure. This study aims to evaluate the effect of early-life farm exposure

on airway hyperresponsiveness and cough hypersensitivity in an allergic airway inflamma-

tion rabbit model.

Method

A specific environment was applied to pregnant rabbits and their offspring until six weeks

after birth. Rabbits were housed in a pathogen-free zone for the control group and a calf

barn for the farm group. At the end of the specific environmental exposure, both groups

were then housed in a conventional zone and then sensitized to ovalbumin. Ten days after

sensitization, the rabbit pups received ovalbumin aerosols to provoke airway inflammation.

Sensitization to ovalbumin was assessed by specific IgE assay. Cough sensitivity was

assessed by mechanical stimulation of the trachea, and bronchial reactivity was assessed

by methacholine challenge. The farm environment was characterized by endotoxin

measurement.
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Results

A total of 38 rabbit pups were included (18 in the farm group). Endotoxin levels in the farm

environment varied from 30 to 1854 EU.m-3. There was no significant difference in specific

IgE values to ovalbumin (p = 0.826) between the two groups. The mechanical threshold to

elicit a cough did not differ between the two groups (p = 0.492). There was no difference in

the number of cough (p = 0.270) or the intensity of ventilatory responses (p = 0.735). After

adjusting for age and weight, there was no difference in respiratory resistance before and

after methacholine challenge.

Conclusion

Early exposure to the calf barn did not affect cough sensitivity or bronchial reactivity in oval-

bumin-sensitized rabbits. These results suggest that not all farm environments protect

against asthma and atopy. Continuous exposure to several sources of microbial diversity is

probably needed.

Introduction

Over the past 50 years, the prevalence of allergic respiratory diseases has been constantly

increasing in industrialized countries. This progression makes it a major public health prob-

lem and the development of prevention methods must today constitute a health priority. The

Hygiene hypothesis explains this progression by our modern lifestyles, particularly by the

decrease in the biodiversity of microbiological exposure in the perinatal period [1, 2]. The

reduction in exposure to microbial agents during pregnancy and the first years of life may

favor Th2-mediated allergic disorders [3, 4].

The European birth cohort PASTURE (Protection against Allergy: STUdy in Rural Envi-

ronments), set up in the early 2000s, has focused on the protective effect of growing up on a

dairy farm against Th2-driven allergic responses [5–7]. Up until now, several international

cross-sectional studies have demonstrated that early farm exposure protects against allergic

diseases, atopic sensitization, and asthma [8, 9]. Early exposure during pregnancy and first

years of life seems to be a window of opportunity for immune homeostasis [10]. However,

most of the time, farm exposure is continuous during the entire childhood so it is not known if

early farm exposure followed by an exposure break is sufficient to provide protection against

allergic diseases.

Even though exposure to farm dust, with a high microbial diversity content and a high

endotoxin level, is a well-known protective factor from the farm environment [11–13], it is not

the only pathway to biodiversity of microbial exposure. Exposures to different animal species

during pregnancy, high food diversity in the first year of life, and a diet rich in dairy products,

especially cheese, have also been involved in the protective effect of farming lifestyles on aller-

gic diseases and asthma [14–17]. Moreover, the host genetic background in the host-micro-

biome crosstalk may play an important role [18].

Significant advances in understanding this ‘farm effect’ have been explored using an

approach that compares and contrasts traditional and modern farming environments and

populations with closely comparable genetic compositions [19]. However, setting up a clinical

therapeutic trial in this direction turned out to be very complex and its attempt failed. Facing

the current impossibility of carrying out a clinical therapeutic trial aimed to ‘apply’ the farm
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environment to a cohort of newborns, experimental models would represent a good

alternative.

The aim of this study is to set up early-life farm exposure in an allergic airway inflammation

rabbit model in order to test the hypothesis that such exposure protects from airway hyperre-

sponsiveness and cough hypersensitivity.

The use of a rabbit model sensitized to ovalbumin in order to model allergic airway inflam-

mation is quite appropriate for this study. In addition to being the model of choice to explore

cough reflex and asthma [20], rabbits have, such as humans, undergone a significant distanc-

ing from the farm environment to a low microbial diversity environment that occurred over

several generations. The specific housing procedures for rabbits (a pathogen-free zone for the

control group and an experimental farm for the farm group) were implemented from one

week of gestation to six weeks after birth to ‘model’ an early exposure followed by an exposure

break.

Material and methods

Animals

Overall, six pregnant New Zealand rabbits were purchased from HYCOLE (SARL-HYCOLE)

at one week of gestation. During housing, food (Safe1 110) and water were given ad libitum

and checked daily by the technical staff. The enrichment consisted of hay or small pieces of

wood. The animal care and study protocol was approved by the local ethics committee on ani-

mal testing (Comité d’éthique en expérimentation animale, CEEA) which is affiliated to the

University of Lorraine (Comité d’Ethique Lorrain en Matière d’Experimentation animale

CELMEA C2EA-66) followed by the validation of the Ministère de l’Enseignement Supérieur

et de la Recherche under authorization number APAFIS#26171–2020051915444165 v3

according to recommendations 86–609 CEE issued by the council of the European

Communities.

Early life exposure

In order to study the early-life farm effect, pregnant rabbits were divided into two exposure

groups according to the type of housing facility used. The rabbits and their offspring were kept

in these specific facilities until six weeks after delivery.

The control group was housed in the pathogen-free zone of the Animal House of the Uni-

versity of Lorraine, in order to model an environment with low microbial diversity. In the

pathogen-free zone, all material (including food and water) was sterilized before entering the

zone. Animal handlers that entered the pathogen-free zone wore specific clothing that had pre-

viously been sterilized, as well as two pairs of gloves, overshoes, a mask, and a cap. The preg-

nant rabbits were housed in a wire mesh cage. Sterilized hemp litter was placed, without direct

contact with the rabbits, under the cage to absorb excreta and was changed once a week. The

newborn rabbits had a nest made of sterilized cardboard shavings. Regular sanitary controls

performed during pregnancy and the offspring’s first month of life revealed no pathogenic

bacteria.

The farm group was housed in a calf barn at La ferme de la Bouzule, an experimental farm

of the University of Lorraine. The calf barn comprises a small enclosed barn with limited wind

and bird entry, where feed and bedding materials for calves are delivered by hand. The preg-

nant rabbits were housed in a wire mesh cage, directly next to the calves’ pen, with hay and

straw bedding that was changed once a week. The newborn rabbits had a nest made of straw

with a direct entrance to their mothers’ cage.
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The rabbit feed was the same for both groups. From their seventh week of life, all the new-

born rabbits were weaned and housed in the conventional zone of the Animal House of the

University of Lorraine with a 16-hour day and 8-hour night cycle. After weaning, the rabbit

mothers were proposed for adoption.

Endotoxin levels in the farm environment

A sampling of airborne endotoxins was performed on three occasions, using a 37 mm polysty-

rene 3-piece closed-face cassette (Millipore1, France). The closed-face cassettes were mounted

with a fiberglass filter (GF/B glass microfiber filter, pore size 1.0 μm, Whatman) as the collec-

tion support and another similar filter as the backing support. The fiberglass filters were previ-

ously heated at 250˚C for 120 minutes to make them pyrogen-free. The cassettes were

connected to portable constant flow pumps (Apex2, Casella, USA) and the sampling was per-

formed at a flow rate of 2 L.min-1. The flow rate was calibrated and controlled before and after

sampling using a bubble flow meter (Gilian1, Gilibrator, USA). All samples were taken at

about 1.7 m from the ground.

The endotoxin concentration was assessed by introducing 5 mL of pyrogen-free water into

each cassette, followed by shaking for 20 minutes at 2000 rpm (Multi-Reax1 shaker, Hei-

dolph1, Germany). The endotoxin concentration in the extract was assayed using the LAL

kinetic chromogenic detection assay following the recommendations of the manufacturer,

using Kinetic-QCL1 kits (Lonza Group Ltd). The limit of detection of the endotoxin analysis

was 0.005 EU.ml−1, i.e., 0.025 EU per filter. The volume of air sampled was calculated based on

the flow rate and the duration of sampling (around five hours), and the airborne endotoxin

concentration was thus expressed in endotoxin units (EU) per cubic meter (EU.m−3).

Sensitization and provocation of airway inflammation with ovalbumin

The sensitization to ovalbumin (OVA) and challenge protocol used in this study are shown in

Fig 1 and described in detail in the S1 File. The anti-OVA Immunoglobulin E (IgE) antibodies

(undiluted sera) were determined by using the Rabbit Anti-OVA IgE ELISA kit from MyBio-

Source (San Diego, CA, USA), following the manufacturer’s instructions.

Anesthesia and animal preparation

The anesthesia, analgesia, euthanasia, and animal preparation are detailed in the S1 File. For

technical reasons, we were forced to carry out the final experiments (anesthesia and provoca-

tion of cough) earlier (20 days before) in the farm group than in the control group.

Mechanical provocation of cough in anesthetized and tracheotomized

rabbits

The apparatus developed to elicit a discrete mechanical challenge to the trachea has been

described in detail and validated in previous reports [21]. To describe it briefly, a rotating silas-

tic catheter introduced in tracheotomy is driven by a small electric motor that spins the cathe-

ter and rubs its tip onto the airway mucosa for a short period. The electrical signal from the

engines serves as a marker for accurate identification of the stimulus time course. As cough

reflex is significantly more frequently provoked during inspiration compared to expiration,

mechanical stimulations were triggered during the inspiratory phase. The beginning of inspi-

ration was detected electronically as soon as the flow signal reached a positive value. Four stim-

ulation durations (50, 150, 300, and 600 msec) that were each repeated twice in a

pseudorandom order were performed. An interval of at least one minute of quiet and regular
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breathing was allowed to elapse between two stimuli, during which the reference tidal volume

(VT) was determined [22]. After each stimulation, four breath cycles were registered in order

to study the type and intensity of the response.

The mechanical stimulation of the trachea provoked defensive reflexes (DR) that were fur-

ther discriminated into a cough reflex (CR) and an expiration reflex (ER) according to the

change in VT, peak expiratory flow (V’Epeak), and rectus abdominis electromyographic

(EMG) activity [23]. The CR was defined by an increase in VT followed by an increase in

V’Epeak associated with a burst of rectus abdominis EMG activity (Fig 2), and the ER was

defined by an increase in V’Epeak without a preceding increase in VT associated with a burst

of rectus abdominis EMG activity [24]. To take into account the spontaneous between-breath

variability, an unbiased differentiation of the CR and the ER was achieved by a statistical evalu-

ation of the VT between the stimulation and reference breaths. The VT of the reference breath

was determined as the mean of three breaths prior to stimulation and its upper limit as the

mean plus three standard deviations. The CR was identified when the VT of the stimulation

breath was higher than the upper limit of the reference VT. The defensive response to one

mechanical stimulation consisted of a bout of one or several CRs and/or ERs. In addition,

three types of responses were considered while taking into account all the DRs induced by the

mechanical stimulation during the next four breath cycles (not only the first response): an ER

only, a CR only, and both an ER and a CR.

The use of four stimulation durations allowed the assessment of the duration–response

curve and enabled the assessment of the defensive response threshold (DT) to mechanical

stimulation. The DT was defined as the shortest stimulation duration necessary to provoke a

Fig 1. Sensitization and challenge protocol.

https://doi.org/10.1371/journal.pone.0279498.g001
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response initiated by the CR (cough threshold [CT]) or ER (expiration reflex threshold [ET]).

In the absence of any DR, even with the longest stimulation duration, the threshold was arbi-

trarily set to 1200 msec.

The maximal numbers of DR, CR, and ER were defined as the cumulative numbers of each

reflex among the four cycles studied during one mechanical stimulation. The cumulative num-

bers of DR, CR, and ER were calculated as the sums of DR, CR, and ER numbers, respectively,

induced by the eight mechanical stimulations performed on each rabbit.

Measurement of allergen-induced airway responsiveness to methacholine

The respiratory measurements were performed as described previously [25]. The airflow was

measured at the tracheal opening using a Fleisch pneumotachograph connected to a differen-

tial pressure transducer, the signal of which was integrated with the volume. The transrespira-

tory pressure was measured at a side port of the cannula using an identical pressure

transducer. The airway caliber was assessed by the respiratory resistance (Rrs) using the forced

oscillation technique. A loudspeaker generated a sine wave, forcing a signal at 20 Hz and the

Fig 2. Typical cough reflex to mechanical stimulation of the trachea. The increased expiratory flow is associated

with a burst of rectus abdominis EMG activity and preceded by an increase in the tidal volume. The thick bar on the

top indicates the moment of mechanical stimulation.

https://doi.org/10.1371/journal.pone.0279498.g002
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Rrs was computed as the real part of the complex ratio of transrespiratory pressure to flow

(respiratory impedance [Zrs]). The values near zero breathing flow were retained in order to

minimize the flow-dependent component in Rrs. A methacholine (Mch) challenge was per-

formed: successive quadrupled doses (0.016, 0.065, 0.25, 1, and 4mg.mL-1) of Mch (Sigma-

Aldrich, France) were delivered for 30 seconds by an ultrasonic nebulizer (LS 290, SYSTAM1,

France) connected to the tracheal cannula. Rrs was assessed after each Mch aerosol. Challenge

was stopped when the resistance was superior or equal to a two-fold initial Rrs.

Two measurements of baseline Rrs during 60 seconds were performed and averaged there-

after to provide the baseline data for the Mch dose–response curves. Allergen-induced airway

responsiveness to Mch was calculated as the Mch concentration needed to induce a 50%

(PD50) and a 100% (PD100) increase in the Rrs when compared to baseline.

Statistical analysis

All quantitative data were expressed by the median [IQR 25–75%], and statistical comparisons

between groups were performed using non parametric Mann-Whitney U test. Statistical com-

parisons between groups for qualitative variables (DT, CT and ET) were performed using chi

square test or exact fisher test. Correlation between quantitative variables was explored using

Spearman’s rank correlation coefficient. A non-parametric generalized linear mixed model

was used to adjust the statistical comparison of quantitative variables with the correlated vari-

ables. Statistical analyzes were performed using SAS 9.4.

Results

A total of six pregnant rabbits were used for this study with three rabbits and their offspring in

each group. A total of 38 rabbit pups were included in the present study: 20 from the patho-

gen-free zone group, from now on called the control group (C), and 18 from the farm group

(F).

At the time of final assessment of cough and bronchial reactivity, the rabbit pups in F were

lighter (F: 2272 g [2075–2435] vs. C: 2637 g [2567–2797]; p<0.001) and younger (F: 90 days

[84–96] vs. C: 110.5 days [104–117]; p<0.001) than the rabbit pups in C.

Endotoxin level in the farm environment

Among the three samples of endotoxins in the calf barn, levels varied according to the days the

samples were taken. The highest level was found in winter during the delivery of bedding

material and the lowest in spring. The results were: 1854 EU.m-3 in February, before the hous-

ing of pregnant rabbits, 109 EU.m-3 in March, during the second week of pregnancy, and 30

EU.m-3 at the beginning of May, when the rabbit pups were one month old.

Sensitization to ovalbumin

Specific IgE to OVA assays were performed in 27 rabbits (16 from C and 11 from F). There

was no difference in IgE sensitization to OVA between groups. The median was 4.66 μg.mL-1

[4.07–6.19] in C vs 4.86 μg.mL-1 [2.87–5.80] in F (p = 0.826).

Cough and expiration reflexes

Results regarding chemical stimulation of cough in conscious rabbits are reported in S2 File.

Two rabbits in each group died at anesthesia induction. Thus, the following measurements

are presented for 18 rabbits from C and 16 from F. There was no difference in defensive
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reflexes threshold between C and F (Fig 3, p = 0.862 for DT, p = 0.492 for CT, and p = 0.885

for ET). Types of DR did not differ between groups (Table 1, p = 0.249).

The estimated median of DT was 150 msec in both groups (Table 2). There was no differ-

ence between groups in the maximal numbers of DR, CR, and ER per stimulation or in the

cumulative numbers of DR, CR, and ER induced by all the mechanical stimulations (Table 2).

There was no correlation in the intensity of DR, CR, and ER with age or weight (S1 Table).

The intensity of ventilatory responses did not differ between groups (Table 3), even after

adjustment for age and weight (Table 4).

Bronchomotor responsiveness

Baseline Rrs was 23.13 hPa.s/L [21.17–27.43] in C and 21.86 hPa.s/L [18.06–25.66] in F and

was not correlated with age or weight (S1 Table). There was no difference in baseline Rrs

between groups whether before (Table 3) or after adjustment for weight (Table 4). Baseline Rrs

was significantly higher in F after adjustment for age but this difference was no longer signifi-

cant after adjustment for weight (p = 0.061, Table 4).

PD50 and PD100 were not correlated with baseline Rrs but there was a moderate correla-

tion with weight and age (S1 Table). In the raw data analysis, there were significantly lower val-

ues for PD50 and PD100 in F (Table 3). However, after adjustment for age and/or weight,

there was no significant difference between groups (Table 4).

Discussion

In our study, early exposure of rabbits to farm environment did not significantly affect

response to ovalbumin sensitization, ventilatory defensive reflexes provoked by mechanical

Fig 3. Defensive reflexes threshold (in msec) in the control group and farm group.

https://doi.org/10.1371/journal.pone.0279498.g003

Table 1. Type of defensive reflex.

Type of defensive response Control Group Farm Group

None 1 1

Expiratory only 1 5

Cough only 6 4

Mixed 10 6

https://doi.org/10.1371/journal.pone.0279498.t001
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stimulations of the trachea, or bronchomotor responsiveness to methacholine. Endotoxin lev-

els in the farm environment had great variability depending on the season and agricultural

activities.

To the best of our knowledge, this is the first study designed to explore the role of early

farm exposure in the development of cough and bronchial hypersensitivity in a rabbit model

of allergic airway inflammation. Recent literature shows that the rabbit model is of particular

interest for the study of asthma and other lung diseases for several reasons [20, 26], and we

used this model especially because mice and rats, the most frequently used animals for asthma

research, do not express a typical cough reflex (at least under anesthesia). Sensitivity to cough

Table 2. Defensive reflexes induced by mechanical stimulation (threshold, maximal number, and cumulative

number).

Control Group Farm Group p-value

Median

[Q1-Q3]

Median

[Q1-Q3]

Defensive reflex threshold

Defensive Reflex 150 [50–300] 150 [100–300] 0.862

Cough Reflex 150 [50–300] 300 [150–

1200]

0.492

Expiratory Reflex 450 [150–

1200]

300 [225–

1200]

0.885

Maximal number of defensive reflexes per stimulation

Defensive Reflex 2 [1–3] 2.5 [1–3.5] 0.448

Cough Reflex 1 [1–2] 1 [0–2] 0.270

Expiratory Reflex 1 [0–2] 1 [1–2] 0.342

Cumulative number of defensive reflexes (induced by the eight

mechanical stimulations)

Defensive Reflex 6 [4–8] 6 [4–11] 0.744

Cough Reflex 4 [2–6] 2 [0.5–5.5] 0.289

Expiratory Reflex 3 [0–3] 2 [1–4.5] 0.626

https://doi.org/10.1371/journal.pone.0279498.t002

Table 3. Maximal intensity of ventilatory responses induced by mechanical stimulation and respiratory resistance

before and after methacholine challenge.

Control Group Farm Group p-value�

Median [Q1-Q3] Median [Q1-Q3]

Maximal intensity of ventilatory responses induced by

mechanical stimulation

Maximal intensity of defensive reflex (%) 269.24 [193.21–

387.13]

192.79 [144.46–

349.40]

0.132

Maximal intensity of cough reflex (%) 224.54 [137.00–

406.12]

227.29 [154.56–

328.28]

0.735

Maximal intensity of expiratory reflex (%) 191.33 [128.34–

324.87]

144.46 [123.60–

229.07]

0.368

Respiratory resistance before and after methacholine

challenge

Baseline respiratory resistance (hPa.s/L) 23.13 [21.17–

27.43]

21.86 [18.06–

25.66]

0.320

PD50 (mg.mL-1) 0.30 [0.26–0.40] 0.13 [0.07–0.19] 0.026

PD100 (mg.mL-1) 0.31 [0.26–0.75] 0.12 [0.07–0.22] 0.024

�Boldface values indicate p<0.05.

https://doi.org/10.1371/journal.pone.0279498.t003
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was explored by mechanical stimulation of trachea in anesthetized and tracheotomized rabbits.

Whereas in human, cough can be elicited by inhalation of chemical agents (citric acid or capsa-

icin), rabbits are more responsive to mechanical stimulation than to chemical stimulation as

shown in S2 File [27]. The nasal breathing of rabbits makes them poorly responsive to aerosol

of citric acid and the scarce expression of TRPV1 receptors in the rabbit respiratory system

makes them unresponsive to capsaicin [28, 29]. The response to OVA sensitization used to

model allergic airway inflammation was assessed by specific IgE assays in a large proportion of

rabbits. Our experimentation, with four OVA aerosols administered and the last one per-

formed 48 hours before the final experiments, was designed to study antigen-induced bron-

chial hyperresponsiveness [26, 30–32]. Whereas most animal studies used farm dust samples

as exposure, we applied farm environment in real life to pregnant rabbits and their offspring.

Even though we characterized this farm environment by endotoxin measures, one limitation

of this real-life approach is the variability of the farm environment, which is affected by several

factors (season, ventilation, number of calves, mulch, etc.) [33]. Endotoxin levels in the patho-

gen free zone were not able to be tested because it was not possible to enter this zone with the

sampling equipment. However, as the procedures to enter the zone and to care for the animals

were intended to limit microbial exposure, we assume that endotoxin levels would have been

very low.

Most animal and human studies focused on the protective effect of farm environment on

asthma and atopic diseases without taking into account the associated cough hypersensitivity.

In clinical settings, cough as a symptom is not specifically evaluated in the asthma control

questionnaire [34] or test [35] and its evaluation is excluded from key asthma intervention tri-

als. However, in the absence of infection, a cough provoked by different stimuli, and that wors-

ens at night, is strongly associated with asthma. In our study, we chose to explore the impact of

the farm environment on cough hyperreactivity because of the protective effect of farm on

atopy and Th2 inflammation, one of the several etiological mechanisms of chronic cough

hypersensitivity syndrome [36]. The absence of a significant protective effect of farm environ-

ment on cough hyperreactivity may be explained by other factors linked to the development of

cough hyperreactivity and neuromodulation [37, 38]. Some studies suggest that dust and expo-

sure to allergens may directly activate afferent nerves and provoke long-lasting cough hyper-

sensitivity [39, 40]. However, up until now, no study has shown an increase in cough

sensitivity after exposition to a farm environment. Whereas several human cohort studies have

Table 4. Associations between exposures (farm vs control), intensity of respiratory responses induced by mechanical stimulation, and respiratory resistance before

and after methacholine challenge.

Model 1 Model 2 Model 3 Model 4

N RR 95% CI RR 95% CI RR 95% CI RR 95% CI

Maximal intensity of defensive reflex (%) 32 3.06 0.62–15.09 5.59 0.47–66.30 2.66 0.22–31.82 4.86 0.15–152.09

Maximal intensity of cough reflex (%) 26 1.43 0.22–9.51 4.66 0.16–139.09 0.86 0.05–15.56 1.61 0.02–114.55

Maximal intensity of expiratory reflex (%) 22 2.13 0.42–10.77 2.42 0.12–48.99 1.56 0.23–10.35 2.60 0.08–82.67

Baseline respiratory resistance (hPa.s/L) 31 2.18 0.47–10.20 28.77 1.45–571.88 8.39 0.94–75.05 45.70 0.83->999.99

PD50 (mg.mL-1) 30 6.61 1.41–31.00 0.78 0.07–8.34 4.93 0.69–35.18 0.72 0.05–9.33

PD100 (mg.mL-1) 28 7.25 1.44–36.35 0.75 0.05–12.02 3.61 0.16–83.29 0.46 0.01–24.43

Boldface values are significant (p<0.05).

Model 1: Crude.

Model 2: Model 1 + age.

Model 3: Model 1 + weight.

Model 4: Model 1 + age + weight.

https://doi.org/10.1371/journal.pone.0279498.t004
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shown a protective effect of farm environment on asthma [17, 41], our study failed to demon-

strate the link between farm environment and bronchial responsiveness.

Previous animal studies using mice showed that chronic pre-exposure to lipopolysaccharide

can reduce the sensitivity to house dust mite sensitization and suppress all of the key asthma

features [42]. In our study, it seems that early exposure to farm did not affect sensitivity to

OVA sensitization, bronchial responsiveness or cough sensitivity in response to OVA chal-

lenge. There may be several explanations for the absence of farm effect on atopic and respira-

tory outcomes in our study. First of all, farm exposure was not maintained during OVA-

sensitization and challenge. Most studies have shown that even though early exposure is

needed to obtain a protective effect [13], continuous exposure might also be needed. Further-

more, the route of sensitization influences the immune response. The intraperitoneal route is

the route of choice in allergic rabbit models [20, 43]. It induces a stronger immune response

than the intra-gastric, respiratory, or cutaneous route [44, 45] and is also less similar to real-

life routes. Thus, early farm exposure might have been insufficient to protect against this

strong route of sensitization. Further analysis of inflammatory mediators, cell distribution,

and Th1/Th2 cytokines secretion in rabbits might help to better understand the impact of

early exposure to farm dust on immune response to OVA sensitization.

Regarding the farm environment, the rabbits were housed in the calf barn where endotoxin

levels were expected to be high due to the small enclosed area with limited wind entry and the

use of hay and straw as feeding and bedding material. The study of allergy and asthma preva-

lence in Amish and Hutterites populations has shown that a high level of endotoxin exposure

is needed to protect against allergy and asthma [19], and other studies have shown that there is

a dose–response effect [3, 13]. However, the level of endotoxin exposure needed to protect

against asthma has not been established yet. In our study, endotoxin levels found in the calf

barn are similar to those described in other studies in cow sheds [46] and dairy cattle [47]

from modern farms but lower than in older studies in dairy barns [48]. The wide range of

endotoxin levels, with the highest one measured in winter after bedding activities, has already

been described in cow sheds and dairy cattle or barns in a same place but with different set-

tings [49]. Irrespective of the season during housing of pregnant rabbits and their offspring,

the number of calves present in the barn might also affect the level of endotoxins [33].

Finally, not all farm environments protect against asthma and atopy [50]. In the past 20

years, traditional dairy farms have been studied in European cohorts to understand the specific

factors of dairy farm environment involved in the protection of asthma and allergic diseases

[5, 8, 9]. In addition to the exposure to a high endotoxin level, those studies have shown a pro-

tective effect of the consumption of raw cow’s milk during pregnancy and in the first year of

life [8] and also a protective effect of a diversity of early exposures [51], such as high food

diversity [15] and exposure to different animal species [14]. Together with our results, these

studies suggest that the protective effect of farm environment is not only due to the exposure

to dairy farm’s dust but also to several other factors. Finally, another interesting result of these

cohorts is the variability of the protective effect of farm exposure according to genetic factors

[14, 18, 52] that may be different in rabbits compared to humans.

Conclusion

The advantage of animal models is the ability to analyze the impact of one factor at a time

while controlling all other factors. In our study, we analyzed the relationship between early

exposure to farm dust and allergic and respiratory outcomes in an allergic airway inflamma-

tion rabbit model. Early farm exposure during the rabbits’ pregnancy and the offspring’s six

weeks of life did not affect allergic sensitization, cough sensitivity, and bronchial hyperactivity.
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Unlike children living on a farm, in our animal model, the rabbits were exposed to a farm envi-

ronment for a limited amount of time and were only exposed to farm dust. These results sug-

gest that early exposure to farm dust alone is not sufficient and that continuous exposure to

several sources of microbial diversity (dust, food, animals, etc.) is needed to prevent atopy and

asthma.
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